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Chapter 1

Introduction

This report documents my internship in the IP2I Virgo group, during which i
have worked on data analysis for searches for Gravitational Waves (GW) signals
from compact binaries coalescences (CBC).

1.1 Gravitational Waves

1.1.1 Historical introduction
Gravitational waves have been predicted theoretically by Einstein in his general

theory of gravitation in 1916. They are waves solutions of the equations which phys-
ically represent a perturbation of the space time himself like a wave on the water.
These objects are very hard for experiments to detect because of the smallness of
their amplitude ≈ 10−20-10−25.That’s why,there was no evidence of their existence
until 2015 but only indirect proofs such as the study of the pulsar PSR1913+16.

It’s only in 2015,that the signal of a GW was for the first time detected by LIGO.
This was a tremendous achievement for GW terrestrial interferometers and a mile-
stone for the gravitational waves physics for which three eminent physicist of the
LIGO/Virgo collaborations have received the Nobel Prize in Physics in 2017.

With LIGO and Virgo taking data and detecting more and more events, with
particularly one example of multi-messenger analysis of a Binary Neutron Starts
coalescence in 2017 [1], GW are a very active area of physics and a very promising
one. Indeed, GW are a new messenger allowing us to explore the Universe in an
unprecedented way with implications for nuclear physics, cosmology for instance,
and plenty of room for new discoveries.
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1.1.2 Theory of Gravitational Waves
To obtain a theoretical expression of a GW,we must start with the non linear

equation of general relativity:

Rµν −
1
2

gµνR =−8πG
c4 Tµν (1.1)

where Rµν is the Ricci curvature tensor, R the scalar curvature,gµν the metric tensor
and Tµν the stress-energy tensor.

In the weak filed approximation, the curvature can be written as Minkowski
curvature which corresponds to a flat space. So, the metric tensor can be written as:

gµν = ηµν +hµν (1.2)

where ηµν is the Minkowski tensor (with c = 1):

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (1.3)

and hµν � 1 is the perturbation.

After few calculations and some adjustments in the equations , especially if we
want GW in vacuum (Tµν = 0), we obtain:

2h̄µν = 0⇔{∇− ∂ 2

∂ t2}h̄µν = 0 (1.4)

with h̄µν ≡ hµν − 1
2ηµνhαβ ηαβ .

We recognize a wave equation which by definition admits waves solutions:

h̄µν = Re{Aµνeikρ xρ

} (1.5)

with Aµν the amplitude of the wave and kρ the wave factor.

This simplified calculation shows that GW are a natural consequences of Ein-
stein’s equations. In reality, the calculations are quite more complex because we
aren’t in vacuum so we have to conserve the tensor Tµν and the effect of very strong
gravitational field, for example in binary systems, has to be taken into account.

In real life, for compact Binary coalescences , post-Newtonian expansion are
used to find approximate solutions to the Einstein’s equations, and describe quite
well the so-called inspiral phase as illustrated in Figure 1.1. When the gravitational
field becomes too strong, the solutions needs numerical relativity calculations. The
combination of these two ingredients can give predictions of GW waveforms, that
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Figure 1.1: Example of Binary Black Hole template

are often called "templates". The shape of a given template depends on many pa-
rameters such as the type of objects involved in the coalescence, their mass and
spins. For example, the larger the masses of the objects are, the shorter is the signal
and its amplitude higher. Also, closer the source is, higher is the amplitude of the
signal coming from the source but its shape doesn’t change.

1.1.3 Sources of Gravitational Waves
It exists several objects that theoretically are expected to emit gravitational waves.

The GW signal associated to them can be transient or continuous, but they all have
in common that they can help us to learn a lot about our Universe or even more.
Let’s describe few of them:

-Supernovae: such as supernovae of type II which are the result of the col-
lapsing of massive stars that creates a neutron star or a black hole. If this process
isn’t symmetric, GW will be emitted from the object but their detection are difficult
because the determination of the shape of these GW emission is still hard to predict.

-Binary systems of compact objects (CBC): mainly composed by neutron stars
and black holes, both objects turn around each other by emitting GW. The system
is therefore losing energy, which decreases the distance between both objects and
increases their rotation velocity until they enter the coalescence phase where they
mix each other up to form only one object.

-Continuous waves sources: spinning neutron stars with asymmetry or surface
irregularity would emit a periodic signal.

-Stochastic background: it is the equivalent of the cosmic microwave back-
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ground but with the first emission of GW in the primordial universe. The detection
of this signal could teach us a lot about the early beginning of the Universe.

-all others exotic sources including unknowns.

The LIGO/Virgo community is very active to search for all these signals. As
of today, only signals from CBC have been detected. We will only deal with these
particular systems in this report.

In conclusion, GW are a new messenger allowing us to explore the Universe and
their study has important implications in many fields, as nuclear physics (helping to
understand the equation of state of super-dense matter in Neutron Stars) , cosmol-
ogy (measuring the Hubble parameter) or Gravity (test in strong fields of General
relativity).

1.2 Detection with LIGO/Virgo

1.2.1 Principle of optical interferometry

Figure 1.2: Schema of the Michelson Interferometer

LIGO and Virgo network consists of three interferometers: two LIGO in the USA
(the LIGO Handford and Livingston Observatories, also noted LHO and LLO re-
spectively) and one in Italy named Virgo. They work on the principle of a Michelson
interferometer with two perpendicular arms, which are several kilometers long ( 4
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for LIGO and 3 for Virgo ). As we can see in Figure 1.2, both arms have a Fabry-
Perot cavity which allows to extend the light travelled length in order to get a better
sensitivity ( Michelson sensitivity is inversely proportional to the travelled length of
the light in the arms).

The passing of a GW is highlighted by detecting the induced oscillation in the
length of the interferometers arms. The signal is obtained by the difference on the
arm’s length induced by the passage of a GW, which is visible as an interference
pattern. Each detector is sensitive to a part of the sky, for example if a GW comes
from the top of the detector, no signal will be detected. That’s why it is interesting
to have several detectors in different places on the Earth. Thereby the chance to
detect a signal from every part of the sky will be higher.

1.2.2 Difficulty of detection
Actually, the noise makes the sensitivity of the interferometer! For instance, the

first physical limit is given by the finite number of photons in the lasers which varies
and then leads to a noise called the shot noise or the noise of photons. These fluc-
tuations which are detected by the final photo-detectors reduce the contrast and the
power of the laser which is the first "problem" to consider but not the last.

Figure 1.3: Amplitude spectral density of the total strain noise h(t) which repre-
sents the amplitude of oscillations coming from noise of the Virgo,LHO and LLO
detectors (the lower the curve is, the sensitivity the sensitivity) [1].

Because of the extreme smallness of the signal, a lot of external sources can
parasite the data. Thereby,the main issue for these detectors is to avoid the noise
from any intrinsic or environmental factor like thermal noises induced by the instru-
ments themselves or seismic sources. Figure 1.3 shows the noise in each detector ,
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as a a function of the frequency. The strain noise represents the amplitude of h(t)
oscillations coming from noise, so the lower the curve is, the higher the sensitivity.

The remaining noise is tackled directly at the analysis level with statistical tools
and the theory of signal processing which we will discuss in the next part. Also,
the detectors are placed in coincidence in order to decrease as much as possible the
fakes signals coming from noise in any individual detector because the noises aren’t
correlated between detectors.

1.2.3 Present and futures detectors
The LIGO/Virgo instruments made the experimental GW science possible. Dur-

ing the latest observation run (called O3, that lasted since April 2019 until March
2020) LIGO and Virgo have observed an average of 1 interesting event per week.
The interferometers are now undergoing a technical shutdown, with several foreseen
improvements, which will lead to an even higher sensitivity for the next observation
run (O4 in 2021).

Besides, new detectors are also operating in project, terrestrial such as:

- KAGRA in commissioning phase and already taking data.
- LIGO India same as LIGO but in India, the site has been chosen, but the con-

struction has not started yet.

- 4th generation of detectors such as Einstein Telescope in Europe or Cosmic
Explorer in USA (still in the project phase and not approved yet).

And one space-based detector LISA which is an approved project and already
funded. It will be composed of three satellites and will be sensitive to lower fre-
quencies, Figure 1.4.

1.3 CBC searches
The Virgo group at IP2I works on offline detection of CBC with the MultiBand

Template Analysis code [2]. It exists two kind of analysis: offline and online. The
online analysis is performed live during data taking in order to alert the telescopes
with the lowest possible latency. So that for interesting events (like the coalescence
of two neutron stars) they can point to the correct sky localisation and provide an
electromagnetic followup. The offline analysis is released several weeks after the
data taking and allows to have a better estimation of parameters and a better sensi-
tivity.

The purpose of the analysis is to detect signals of coalescence between two neu-
tron stars -BNS-, or a neutron star and a black hole -BHNS-, or two black holes
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Figure 1.4: Improvements of the sensitivity of detectors as a function of the fre-
quency

-BBH- on the data of LIGO and Virgo. CBC analysis use a matched filtering tech-
nique, that will be explained in the following. The basic idea is to evaluate the
compatibility of the data with several theoretical waveforms (templates) and see if
any of them has a good matching. From this procedure,we estimate the significance
of an event by computing its Signal on Noise Ratio (SNR) and the chance that the
event is just coming from the noise which is quantified by the False Alarm Rate
(FAR). Let’s see how these two variables are built.

-SNR:

We have to introduce the Fourier transform and the intercorrelation product to
really understand the matched filtering.
The Fourier transform is defined as:

ã( f ) =
1√
2π

∫ +∞

−∞

a(t)e−i2π f tdt (1.6)

Let’s consider two different signals a1 and a2, the intercorrelation product is
defined as :

a1 ?a2 =
∫ +∞

−∞

a1(t)a2(t + τ)dt (1.7)

This product quantifies how much two signals are corresponding as it is ex-
plained Figure 1.
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Figure 1.5: Explanation of the intercorrelation product between two signal a(t) and
s(t) where a(t) is built as the sum of the signal s(t) at a time τ0 and a random
Gaussian noise

Then, we perform the product between the signal in the output of the detectors
h(t) = n(t)+ s(t) , with n(t) the noise and s(t) the signal, and a template:

S≡| h̃? s(τ) | (1.8)

Next, we compute the standard deviation of a signal which contains only noise:

σN =
√
〈n? s(τ)2〉−〈n? s(τ)〉2 =

√
〈n? s(τ)2〉 (1.9)

where 〈〉 is the average value over time. Besides 〈n ? s(τ)〉 = 0 because the noise
n(t) and the signal s(t) are totally different.

And then we define the ratio of S and σN called Signal on Noise Ration -SNR-
which assesses how strong the signal is relative to the noise :

SNR≡ S
σN

(1.10)

Thus, the greater the value of the SNR is, the greater the chance that the signal
comes from a real event will be.

-FAR:

The False Alarm Rate is the rate expected from background-only events. With-
out going into details, in MBTA, it is evaluated making all possible combination of
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signals from the three detectors, hence building "fake" coincidences and measuring
their rate. Several re-scaling factors are then needed to obtain a rate that is mean-
ingful, based on the observation time and considered searches.

The FAR associated to an observation helps quantifying how likely it is that it
comes from a real event and not a fluctuation of the noise. For instance we can see
Figure 1.6, the grey band that shows the expected noise from background only and
the red curve and the blue dots which are the observations. The blue dots that are
significantly far from the background expectations corresponds to events that were
judged significant enough to be tagged as real.

Figure 1.6: Cumulative histograms of search results for the matched-filter searches
plotted verse inverse FAR. The Figure is taken form the LIGO/Virgo publications
on the second observation run [2].

Before running on data to look for candidates, simulated events are superim-
posed on data and the analysis is run to establish its performances. These simulated
events are called injections and their contribution to h(t) are based on waveform we
would expect from real astrophysical events.

The standard procedure within the LIGO/Virgo working group is to first review
the performances on simulations (and on noise from data) before assessing that the
performances of the pipeline are acceptable and then proceeding to look for real
candidates in data. Since the background changes all the time, this assessment has
to be done very often (typically once a week). For all these reasons, the run on
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simulations plays a central role in the offline CBC analyses.

During my internship, I have participated to the MBTA offline running, in par-
ticular concerning the run on data with injections.

As explained, the run on injections is very important to evaluate the perfor-
mances of the analysis. Running over all data with overimposed simulated event,
and testing a larger number of templates can be very CPU and time consuming.
Since the assessment of performances has to be repeated roughly every week on a
new chunk of data, it is important to optimise the CPU usage of the run on injections.
The first part of my internship concerns this topic, and is documented in Chapter 2.
In chapter 3, the evaluation of the performances of the analysis are summarised, in
particular for that concerns detection efficiency and analysis sensitivity.
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Chapter 2

Computing time and resources
optimisation for simulation runs

2.1 Introduction

2.1.1 Purpose
As we have seen before, the study consists on a matching between data and tem-

plates. The number of templates is very high (e.g. 170 000 for BBH) and we have
to optimize the resources usage for the run on simulated events which, as explained,
has to be performed roughly every week.
The basic idea is, for each injection, instead of performing the matched filtering for
all templates, to use only the templates that are close (in the parameter space) to the
simulated event.

So, for each injection , we choose a parameter of the injection such as the mass
for instance and we match the templates which are in a certain interval in mass
around the value of the corresponding injection. By doing that we have a gain in
computation time but, at the same time, we can lose injections that would have been
detected by templates with a mass value outside the considered interval. Thus,we
have to find a good equilibrium between the gain in time and the relative lose of
injections that we arbitrary want to smaller than 2%.

At first, a study has been performed to determine which variables are best suited
to make the selection of templates to be used ,given an injection. The main variables
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considered here are the following:

χ =

(
1+

(m1−m2)

(m1 +m2)

)
S1Z

2m2
1
+

(
1− (m1−m2)

(m1 +m2)

)
S2Z

2m2
2
, (2.1)

Mchirp =
(m1m2)

3/5

(m1 +m2)1/5 , (2.2)

STOT = S1Z +S2Z (2.3)
MTOT = m1 +m2 (2.4)

η =
m1m2

(m1 +m2)2 (2.5)

(2.6)

where mi=1,2 , are the masses of the two coalescing objects and Si=1,2 Z the projec-
tions along the z axis of their spin.

2.1.2 Strategy
The strategy used to quantify the gain in time and the loss of information is the
following:

1) The first step is to run using all templates , without any cut , with all the
injections to have a concrete view of the matching between the templates and the
injections and see the performances without cuts.

2) For each considered variable X , we build the quantity ∆ = Xdet−Xin j, where
Xdet is the value of X for the template that has resulted in a detection and Xin j is
the true value used to generate the injection.∆ is calculated for each detection cor-
responding to an injection and its dispersion measures how well we reconstruct the
variable X .

3) From the study of ∆, one can determine:

i. the fraction of injections we would have missed if we had cut on X , as
a function of the cut value. As stated previously, we define as our target that this
fraction must not be higher than 2%.

ii. the corresponding fraction of used templates; this quantifies the gain in
time when running on data with overimposed injections.

As we will see, the same procedure can be adapted to more complicated cases
(variable cut, 2-dimensional cut using 2 variables,..).

4) In future runs, the selection can be used right away, resulting in an optimal
usage of CPU time and resources.
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5) The whole procedure is repeated for each kind of search (BBH,BNS and
BHNS). Given the number of available templates (around 170 000 for BBH, 260
000 for BNS and 500 000 for BHNS), the reduction of computing time needs for
BHNS will have the strongest impact on the analysis.

2.2 Results

2.2.1 BNS
This section describes the results of the procedure explained in 2.1.2, for binary

systems of Neutron Stars.

(a) ∆Mchirp as a function of Mchirp (b) Profile of Mchirp as a function of Mchirp

Figure 2.1: Left plot: dispersion of Mchirp, on the x axis is displayed the value of
Mchirp of the injection and on the y axis ∆ = MDet

chirp−MIn j
chirp. Each point corresponds

to a detected injection. Right plot: for each bin in Mchirp, the points show the average
value of ∆ for detected injections with Mchirp falling in the considered bin.The error
bars show the RMS of the ∆ distribution.

The Figure 2.1(a) shows the dispersion in ∆Mchirp as a function of the value of
the injected Mchirp and we can see that the resolution is very good because we have
a small dispersion.

The Figure 2.1(b) shows to us the mean value of ∆Mchirp as a function of the
injected Mchirp with RMS as errors for the bins. The differences in RMS between
adjacent bins are driven by few outlier events, resulting from bad matching, some
of which are not visible in (a).

As a first step, we use a constant cut of ∆Mchirp < 0.01M�. The performance of
such choice are displayed in fig 2.2.

Figure 2.2(a) represents the fraction of used templates. The red histogram
shows, for the central value of each Mchirp bin, the fraction of templates that lie
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(a) fraction used templates (b) fraction missed injections

Figure 2.2: Results of the 1D study -BNS-

within an interval of ±0,01M�, the blue one is the normalised distribution of injec-
tions and the black one is the multiplication of the red by the blue in the purpose to
have a weighted average. Then, by integrating the black bins, we get the fraction of
used templates which is here equal to 2,4%.

Figure 2.2(b), shows the fraction of missed injections. Each bin represents the
number of missed injections in the bin divided by the total number of injections.
The total fraction of missed injections is to 0.1%.

In conclusion for the BNS system, if when running on injections we use a con-
stant cut of ±0,01M�, to determine which templates to use, we expect to improve
by a factor 50 the running time related to the matched filtering step. This reduction
comes with a loss of injections of about 1 per thousand. The performances of the
method being very satisfactory already in this simple scenario (constant cut), we
don’t try more complicated solutions.

2.2.2 BHNS
The second system -Black Hole Neutron Star- is very important because of its

number of templates (around 500 000). Then that’s where we want to absolutely
have the bigger gain as possible, in our computation time.
We have remade the previous study to find out the best variable of interest for such
system. It appeared that Mchirp is again the best variable with the lowest dispersion.
In Figure 2.3 (a) and (b), the dispersion in ∆Mchirp seems to depend on the value of
the considered injected Mchirp.

In this case we consider a variable cut, meaning that the value used to choose
which templates to consider will change from one injection to another. Several val-
ues of the cut are tested, as shown in Figure 2.4 and Table 2.1.

From this study, and keeping in mind we want to have less than 2% of missed
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(a) ∆Mchirp as a function of Mchirp (b) Profile of Mchirp as a function of Mchirp

Figure 2.3: Left plot: dispersion of Mchirp, on the x axis is displayed the value of
Mchirp of the injection and on the y axis ∆ = MDet

chirp−MIn j
chirp. Each point corresponds

to a detected injection. Right plot: for each bin in Mchirp, the points show the average
value of ∆ for detected injections with Mchirp falling in the considered bin.The error
bars show the RMS of the ∆ distribution.

injections, the best solution for BHNS is to use a cut on Mchirp corresponding to
2 ·RMS, see Figure 2.4 and Table 2.1. This means that, when running on a given
injection simulated with a value of Mchirp, we only considered the templates whose
Mchirp is within ±2 ·RMS of the injected value. The used RMS is the error bar
shown in fig 2.3(b) for the bin corresponding to the considered value of Mchirp.

Figure 2.4: Graphs of fractions as a function of n

With this cut , we use 9% of all templates for a loss of 1.8%± 0.2% of all the
injections, as visible in Figure 2.5.

To conclude for the BHNS case, we have found that a variable cut on Mchirp,
equal to 2 ·RMS, will give us a factor ∼ 10 gain in computing time and a corre-
sponding loss of injections of 1.8%.
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Number of
RMS

Fraction used
templates (%)

Fraction
missed injec-
tion (%)

0.5 2.2 11
1.0 4.4 4.4
1.5 7 2.5
2 9 1.8

2.5 11 1.3
3.0 13 1.0

Table 2.1: Summary of BHNS results for different n

(a) fraction used templates (b) fraction missed injections

Figure 2.5: Results of the 1D study -BHNS-

2.2.3 BHH
The last system -BBH- is the more complicated because at high masses the anal-

ysis has its worst reconstruction resolution of physical quantities, due to shorter
signals, more difficult to characterize. This will be visible as a larger dispersion in
our plots. Again , as previously ,Mchirp seems to be the best variable for beginning
the study.

Figure 2.6 shows the dispersion of Mchirp indicating that we have to consider a
variable cut to obtain the best gain as possible.

The performances of different value of the variable cut are summarized in Fig
2.7 and Table 2.2. The best solution appears to be a cut at 7 ·RMS which gives us
a fraction of used templates equals to 28% for a corresponding loss of injections of
2.0±0.3%.

A time gain factor of 3 not being enough, we have decided to continue the study
with two variables: Mchirp and χ . We consider the same Figures of merit as pre-
viously ( the fraction of used templates and the fraction of missed injections), but
this time we evaluate them in the case where we select the templates based on two
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(a) ∆Mchirp as a function of Mchirp (b) Profile of Mchirp as a function of Mchirp

Figure 2.6: Left plot: dispersion of Mchirp, on the x axis is displayed the value of
Mchirp of the injection and on the y axis ∆ = MDet

chirp−MIn j
chirp. Each point corresponds

to a detected injection. Right plot: for each bin in Mchirp, the points show the average
value of ∆ for detected injections with Mchirp falling in the considered bin.The error
bars show the RMS of the ∆ distribution.

Figure 2.7: Graphs of fractions as a function of n

Number of
RMS

Fraction used
templates (%)

Fraction
missed injec-
tion (%)

2 8 10
3 11 6.1
4 15 4.3
5 20 3.2
6 27 2.4
7 30 1.5
8 33 1.1

Table 2.2: Summary of BBH results for different n

18



(a) Fraction used templates (b) fraction missed injections

Figure 2.8: Results of the 1D study -BBH-

variables. In other words, for an injections with a given value of Mchirp and χ , we
only consider templates that have these two variables in two given interval.

An extension of the described method to the case of 2 variables allowed us to
determine the best selection to apply, which seems to be to consider templates that
have values of Mchirp and χ within respectively 7 ·RMSMchirp and 2.5 ·RMSχ .

With this selection, we get a fraction of used templates equals to 21% for a
corresponding loss of injections equals to 1.8± 0.3% as we can see in the Figure
2.9. The two graphs shown are the equivalent of the previous graphs but two di-
mensional. Indeed, the plot (a) Figure 2.9 is the equivalent of the black histogram
shown, for example in Figure 2.8(a), while by integrating the bins of graph (b) of
Figure 2.9 we get the fractions of missed injections.

(a) Fraction used templates (b) fraction missed injections

Figure 2.9: Results of the 2D study for BBH: the left plot shows in y and x axis
the values of ∆ for Mchirp and χ and the color corresponds to the fraction of used
templates in the bin. The color code in the right plot shows, for each bin, the fraction
of missed injection.

In summary for BBH, the best solution seems to be a variable cut with Mchirp
and χ resulting in a factor 5 gain computational time and a loss of 1.8% of all the
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injections. BBH is the system with the lowest gains which is no surprising because
of the difficulty explained at the beginning.

2.3 Conclusion
The optimal cuts, with their performances, are summarized in the Table 2.3.

System Cut Cut value Gain in time Injections loss (%)
BNS fixe 0.01M� 50 0.1

BHNS variable 2·RMS 11 1.8
BBH variable 7·RMSMchirp−2.5 ·RMSχ 5 1.8

Table 2.3: Summary of results for different systems

The results presented previously were obtained using the data from the first
week of 2019 LIGO/Virgo running, called chunk1. As shown in Figure 2.10, the
performances have been tested on three other similar periods ( chunk4, 5 and 6) and
appear to be very stable.

A selection of templates, according to the values determined with this study, is
now used by the nominal analysis. In the future, this study can be repeated with
some improvements such as including more stringent selection on the SNR or FAR
of the considered events, in order to minimise the impact of fakes detections.
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Figure 2.10: Delta Mchirp as a function of Mchirp for different chunks
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Chapter 3

Determination of the sensitivity of
the analysis

3.1 Description
This section documents the evaluation of the sensitivity of the MBTA offline

analysis. In particular, we are interested to see the efficiency of the analysis, as a a
function of some interesting variables. The efficiency is defined as the number of
detected events (with a signal on noise ratio of at least 5).

3.2 Results
For technical reasons the injections are generated homogeneously in distance,

while in real model, we can expect them to be distributed uniformly in volume in-
stead. In order ti recover the correct distributions a weight s applied to the generated
events.

The maximum distance for the considered injections campaign is 5000 Mpc for
BBH, 750 Mpc for BHNS and 350 Mpc for BNS. We can see Figure 3.1, that the
efficiency of recovering BBH events does not plateau at 100% even for close dis-
tances. The reason is that for high masses the GW waves signals are very short,
and are tagged as noise "glitches" by the MBTA code. To recover such signals, a
parallel search is run, with no protection against glitched, and only considering very
short templates. These additional detected events are not included in the plot shown
in Fig 3.1.

Figure 3.2, shows the efficiency as a a function of the effective distance of the
Livingstone detector ( LIGO). The effective distance is the actual distance of the
source multiplied by some geometrical factors, and represents the distance at which
the source localised in the maximum sensitivity spot for a given detector, would
give a signal of the observed amplitude.
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(a) BBH (b) BHNS

(c) BNS

Figure 3.1: Efficiency as a function of distance[Mpc]

Figure 3.2: Efficiency as a function of the effective distance -BBH-

Finally, Figure 3.3 shows the sensitive distance, defined as the distance that we
can detect an event with a signal on noise ratio of at least 5, as a a function of the
cut on SNR and on the IFAR which is the inverse of the FAR. As we can see, the
higher the cut on SNR and IFAR is, the lower will be the sensitive distance. We can
also notice that BBH seems to have a better sensitive distance than BNS and BHNS.
This is explained by the fact that black holes have higher masses than neutron stars
and a bigger mass will lead to a bigger signal amplitude. So, we can detect BBH
system farther than BNS or BHNS system which explain this difference.
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Figure 3.3: Sensitive distance as a function of the cut on SNR and IFAR for BBH
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Chapter 4

Summary

My internship concerned the search for GW signals from CBC with the MBTA
code. In particular, I have worked on the runs on simulated events (called injections
and superimposed to real data).

First, I have developed a technique to optimise the usage of CPU and computing
time for such runs, that allows the analysis to be 5-50 times faster.

As a second topic, I have analysed the results of the runs on simulated event and
evaluated the efficiency and sensitivity of the analysis. With the current analysis
setup, we are sensitive to coalescence of neutron stars up to a distance of around
100 Mpc, and up to almost 1 Gpc for coalescences of black-holes of about 40 solar
masses.
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